Subpolytopes of Cyclic Polytopes
نویسندگان
چکیده
A remarkable result of I. Shemer [4] states that the combinatorial structure of a neighbourly 2m-polytope determines the combinatorial structure of each of its subpolytopes. From this, it follows that every subpolytope of a cyclic 2m-polytope is cyclic. In this note, we present a direct proof of this consequence that also yields that certain subpolytopes of a cyclic (2m+ 1)-polytope are cyclic.
منابع مشابه
On Gale and braxial polytopes
Cyclic polytopes are characterized as simplicial polytopes satisfying Gale’s evenness condition (a combinatorial condition on facets relative to a fixed ordering of the vertices). Periodically-cyclic polytopes are polytopes for which certain subpolytopes are cyclic. Bisztriczky discovered a class of periodically-cyclic polytopes that also satisfy Gale’s evenness condition. The faces of these po...
متن کاملE-Polytopes in Picard Groups of Smooth Rational Surfaces
In this article, we introduce special divisors (root, line, ruling, exceptional system and rational quartic) in smooth rational surfaces and study their correspondences to subpolytopes in Gosset polytopes k21. We also show that the sets of rulings and exceptional systems correspond equivariantly to the vertices of 2k1 and 1k2 via E-type Weyl action.
متن کاملThe Generalized Baues Problem for Cyclic Polytopes II Preprint SC 98-43 (Januar 1999) THE GENERALIZED BAUES PROBLEM FOR CYCLIC POLYTOPES II
Given an affine surjection of polytopes : P ! Q, the Generalized Baues Problem asks whether the poset of all proper polyhedral subdivisions of Q which are induced by the map has the homotopy type of a sphere. We extend earlier work of the last two authors on subdivisions of cyclic polytopes to give an affirmative answer to the problem for the natural surjections between cyclic polytopes : C(n; ...
متن کاملThe Generalized Baues Problem for Cyclic Polytopes
The Generalized Baues Problem asks whether for a given point configuration the order complex of all its proper polyhedral subdivisions, partially ordered by refinement, is homotopy equivalent to a sphere. In this paper, an affirmative answer is given for the vertex sets of cyclic polytopes in all dimensions. This yields the first non-trivial class of point configurations with neither a bound on...
متن کاملThe Generalized Baues Problem for Cyclic Polytopes I
An important special case of the Generalized Baues Problem asks whether the order complex of all proper polyhedral subdivisions of a given point configuration, partially ordered by refinement, is homotopy equivalent to a sphere. In this paper, an affirmative answer is given for the vertex sets of cyclic polytopes in all dimensions. This yields the first non-trivial class of point configurations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2000